

Organic Electronic Materials 2025 Exercise 6 (submit on 25.05.25)

1. Sketch graphs showing the density of occupied states with energy for a material at (i) 0 K, and (ii) at 300 K. Label the Fermi energy level in each graph. Why is the density of mobile charge carriers for intrinsic transport in a pure organic semiconductor *much* lower than for pure silicon?
2. Considering the data on the slide titled “Typical Electrode Materials and Organic Semiconductors” in 5.4:
 - a. Which electrode material would you choose between gold and aluminum to get an injection into a layer of cyano-perylene derivative without resistance?
 - b. Which carrier type is aluminum more prone to inject into a layer of rubrene (5,6,11,12-tetraphenyltetracene)?
3.
 - a. Draw the energy diagram of a simple one-layer electron transport-only device, i.e. a layer of organic semiconductor sandwiched between two suitable electrodes. *Note: We consider that we cannot find electrodes that would lead to injection of electrons into the organic semiconductor without resistance.*
 - b. Give the diffusion (or built-in) potential in the case where both electrodes are the same.
 - c. In the former case of identical electrodes, draw the energy diagram of the device after application of a positive potential on the Fermi level of the right electrode. *Note: The Fermi level of the left electrode is fixed.*
 - d. Considering the relation between gradient of potential and electric field, draw the electric field thus created, directly on your previous drawing.
 - e. Give the expression of the force created by an electric field on an electron.
 - f. From which electrode, left or right, would the electrons be injected into the organic semiconductor layer? Explain why.